
AI Essentials: Activation Functions
• Author: Christian M.M. Frey (web) - (email)

• Deep Learning Basics - Activation Functions

Content

What is an activation function? . 2

Why using non-linear activation functions? . 2

List of Activation Functions . 3

When to use which activation function? - Pros & Cons . 5

1

https://christianmaxmike.github.io
mailto:christianmaxmike@gmail.com

What is an activation function?

Activation Functions are used to compute the output values of neurons in hidden layers in a neural
network. In other words, a node’s input value x is transformed by applying a function g, which is
called an activation function.
Activation functions can regulate the outputs of nodes and add a level of complexity that neural
network without activation functions - or neural networks using just linear activation functions -
cannot achieve.
One can also consider an activation function as a mathematical ’gate’. Each neuron of an hidden
layer receives inputs (xi)i=1,...,n from previous layers for which a linear combination with associated
weights (wi)i=1,...,n is calculated, i.e.,

∑n
i=1wixi = wTx. A bias term w0 is added to the result and

then passed to the ‘gate’, i.e, the activation function g(w0 +
∑n

i=1wixi) transforms the result. This
defines the output of a neuron and is transmitted to the neurons of the next hidden layer.

Why using non-linear activation functions?

Non-linear activation functions allow the model to create a more complex mapping between the
inputs and the outputs. That is an important issue when analyzing complex and high dimensional
data, like images, video, audio. The criteria for an activation function is that it has to be continuous
and (almost everywhere) differentiable such that it can be used in the process of backpropagation.
Comparing linear activation functions with non-linear activation functions, the latter ones can
address the following problems:

• Their derivative is related to the inputs being important when updating the weights of the
neural network (backpropagation). For linear functions the derivative is a constant and has
no relation to the input.

• As neural network using just linear activation functions for each hidden layer will squeezed
down to just one hidden layer, the last layer will also just be linear function of the first layer.
By using non-linear activation functions we can stack multiple hidden layers to create a
more complex model being necessary when we want to learn the characteristics of a complex
dataset with high levels of accuracy.

2

List of Activation Functions

The following table shows a list of activation functions:

Name Definition Derivative Plot

Linear g(x) = αx ∂g
∂x(x) = α

Sigmoid g(x) = 1
1+e−x = sig(x) ∂g

∂x(x) = g(x)(1− g(x))

Tanh g(x) = ex−e−x

ex+e−x = 1− 2
e2x+1

∂g
∂x(x) = 1− g(x)2

Rectified
Linear Unit
(ReLU)

g(x) = max(0, z) ∂g
∂x(x) =

{
0, for x < 0

1, for x > 0

Leaky
ReLU

g(x) =

{
αx, for x < 0

x, for x ≥ 0
∂g
∂x(x) =

{
α, for x < 0

1, for x > 0

Exponential
Linear Unit
(ELU)

g(x) =

{
α(ex − 1), for x < 0

x, for x ≥ 0
∂g
∂x(x) =

{
g(x) + α, for x < 0

1, for x > 0

Swish g(x) = x
1+e−x

∂g
∂x(x) = g(x)+ sig(x)(1− g(x))

Note for functions including non-differentiable points.
As being (almost everywhere) differentiable for an activation function is a crucial part for learning
a model, it may seem that functions with non-differentiable points are not eligible for being used in
the optimization process., e.g., ReLU is not differentiable at x = 0.
From a practical point of view, these functions still perform well because neural network only
approximates a local minimum of the cost function and does not hit it. Therefore, the minimum
of the cost function can correspond to points with an undefined gradient. Nevertheless, for the
case that we find ourselves in such a situation, then in modern software implementations it is
either reported the left-hand or right-hand derivative of f at a point a instead of yielding that the
derivative at a is not defined which might end up in an error. Therefore, it can be reconciled with
our conscience that the non-differentiability of an activation function in only a small number of
points can be disregarded.

3

While learning a neural network the derivative of an activation function play an important role
in the process of backpropagation. In this process it is traced back from the output of the model,
through the neurons having been involved in generating that output, to the input layer. Each
weight being associated between two neurons is then adapted results in a more accurate prediction.
Therefore, the following illustration shows the first derivative of each of the activation functions
being listed above - the number within the brackets indicate the value for α for functions where it
has to be set:

4

When to use which activation function? - Pros & Cons

Name Advantages Disadvantages
Linear • Activation values are real values;

no binary activation
• No non-linearity can be learned

• Derivative is constant - there is no
relationship to an input x

• With a constant gradient, the
changes made by backpropagation
is also constant

Sigmoid • Smooth gradient, preventing
‘jumps’ in output values

• Output values in range [0, 1], nor-
malizing the output of each neuron

• Clear predictions: Low (High) val-
ues are very close to 0 (1)

• Vanishing gradient - for very high
(low) values, there is almost no
change to the prediction (known as
vanishing gradient. This can lead
to a slow learning or in the worst
case there is no learning at all

• Outputs are not zero centered mak-
ing the optimization harder

• Computationally expensive
Tanh • Zero centered - modeling of inputs

having strongly negative, neutral
and positive values is facilitated

• Vanishing gradient - saturated ac-
tivations kill the gradient

ReLU • Learning procedure converges
much faster than one with
sigmoid/tanh activation functions

• Computationally efficient - less
mathematical operations

• Avoids the vanishing gradient
problem

• Dying ReLU Problem - when in-
puts approach zero or are negative,
then the gradient is zero, hence,
the network cannot perform back-
propagation and there is no learn-
ing, leading to dead neurons

• Range of ReLU is [0,∞)

• Output is not zero-centered
Leaky
ReLU

• Learning procedure converges
much faster than one with
sigmoid/tanh activation functions

• Computationally efficient

• Prevents the Dying ReLU Problem
- a small positive slope in the nega-
tive domain enables backpropaga-
tion even for negative input values

• Results are not consistent being a
consequence of the additional hy-
perparameter α regularizing the
slope in the negative domain

5

ELU • Advantage over ReLU, ELU can
produce negative outputs,hence,
no dead neurons

• Closer to zero mean outputs

• Computation requires calling
exp(·)

Swish • No dying ReLU problem

• Has shown to have a slightly in-
crease in accuracy over ReLU

• Slightly more expensive in terms
of mathematical operations being
necessary compared to ReLU

6

