
AI Essentials: Backpropagation

• Author: Christian M.M. Frey (web) - (email)

• Deep Learning Basics - Backpropagation

Content

Notation . 2

What is backpropagation? . 2

What are the central formulas i need to know? . 4

What is general algorithm for learning a neural net? . 5

Example: Backpropagation for a simple 2-layer feedforward neural net 5

1

https://christianmaxmike.github.io
mailto:christianmaxmike@gmail.com

Notation

• X : training set consisting of m samples ((x(1), y(1)), . . . , (x(m), y(m)))

• x(i): denotes the i-th sample of the training set

• y(i): true value of the i-th sample

• ŷ(i): predicted value of the i-th sample

• wk
ij : weight for link connecting the i-th neuron on layer k − 1 with the j-th neuron on layer

k

• hki : result of affine transformation of neuron i in the k-th layer

• aki : output of node i in the k-th layer (i.e., result of activation function on hki)

• gh : activation function for a hidden layer

• go : activation function for the output layer

• Ed: error calculated by using the d-th sample

• E : total error

• δkj : error term for the j-th neuron on the k-th layer

• Nh: number of neurons on the h-th layer

What is backpropagation?

Backpropagation is a training method using gradients of a neural network to adjust the weights of
a network. This adjustment is being made in order to minimize the global error of a neural network
as it is trained. This is achieved by descending down the gradients to lower values. For the training
procedure itself there are two ways to distinguish: Online and batch training.

• Online Training. The weights are adjusted after every sample in the training set. Hence, the
gradients being calculated for the first element in the training set used and the weights are
modified. Then, the training progresses to the next sample in the training set and updates
the neural network according to that. Following this procedure, the training continues until
every sample in the training set has been processed. At this point, we call an epoch has being
completed.

• Batch Training. The gradients for each sample in the training set are aggregated. Then,
the weights of the neural network are updated. At this point, we call an epoch has being
completed.

Although the online training method was the original way to go for backpropagation, it is nowadays
considered as being inefficient because of its numerous updates. Therefore, it is generally preferable

2

to use (mini-)batch training. For a mini-batch the training set is subdivided into chunks that are
used for training, e.g., considering a set of 60′000 samples in your training set and one chooses to
update the weights every 1′000 samples (=mini-batch), this would lead to 60 updates for one epoch
being completed.
The heuristic of backpropagation follows the idea of proceeding from the last layer to the first layer,
where we calculate an error term δkj for each of the j-th node in the k-th layer which is dependent
on the errors on the k + 1-th layer. The error terms on the output layer are defined by a predefined
cost function E expressing the divergence from the predicted value ŷ from the true value y. The
backpropagation got its name from the procedure of the errors flowing backwards, i.e., in the
inverse direction - compared to the forward pass - starting from the output layer to the first layer.
The error terms for neurons in the h-th hidden layer are computed by a linear combination of the
weights wh+1

jk with the error terms δh+1
k . The result is then scaled by the derivative of the activation

function being used on the h-th layer, i.e., g′h(·). This procedure repeats until for each link we have
computed an indicator on how to update its value, or in other words, till we reach the input layer.
Because the computations for backpropagation are dependent on the activations and outputs of
the neurons, the forward pass precedes the backward pass and stores those values. When the
backward pass is completed and all partial derivatives with respect to the weights are known, the
weights can be updated by gradient descent.
The alternating interplay of forward passes and backward passes in every iteration of gradient
descent forces the neural net to reduce the error term till it has found a local minimum. Then, the
neural net has learned a high dimensional non-linear function being an approximation for the
unknown data-generating process having generated the dataset X .

3

What are the central formulas i need to know?

The following summarizes the formulas being used in the procedure of backpropagation using the
error function having been used in classic backpropagation, the mean squared error:

E =
1

2m

m∑
d=1

(ŷ(d) − y(d))2

(i) Partial derivatives w.r.t to weight wk
ij :

∂Ed
∂wk

ij

= δkj a
k−1
i (1)

(ii) Error term of the last layer
δmi = g′o(h

m
i)(ŷ(d) − y(d)) (2)

(iii) Summing up the partial derivatives of each sample

∂E
∂wk

ij

=
1

m

m∑
d=1

∂Ed
∂wk

ij

=
1

m

m∑
d=1

∂

∂wk
ij

[
1

2
(ŷ(d) − y(d))2

]
(3)

(iv) Error terms of hidden layers:

δhj = g′h(h
h
j)

Nh+1∑
k=1

δh+1
k wh+1

jk (4)

(v) Delta rule - updating the weights:

wk
ij ← wk

ij − η
∂E
∂wk

ij

(5)

4

What is general algorithm for learning a neural net?

The steps for training a neural net with (mini-)batches can be summarized as follows:

(i) Forward pass. For each input (x(d), y(d)) we calculate the values hkj and akj for each node j
in the k-th layer and finally the output ŷ(d) on the output layer.

(ii) Backward pass. For each input (x(d), y(d)) we calculate the gradients ∂Ed
∂wk

ij

for each link

proceeding from the output layer to the input layer.

(iii) Aggregation of individual gradients. Calculation of the total gradient ∂E
∂wk

ij

for all samples

in the training set X .

(iv) Adaptation of weights. Update of the weights according to learning rate η and the gradient
∂E
∂wk

ij

.

Example: Backpropagation for a simple 2-layer feedforward neural net

For the sake of simplicity, we will have a look at the process of backpropagation within a feed
forward neural network consisting of an input layer, a single hidden layer and an output layer.
The input layer is of size L, the hidden Layer of size M and the output layer of size N . When we
also include the bias, then there are (L + 1) ×M weights for the connections between the input
layer and the output layer being denoted as v, where vij indicates the weight for the connections
between neuron i of the input layer and the neuron j of the hidden layer. Analogously, the network
has (M +1)×N weights for the links between the hidden layer and the output layer being denoted
as w and wjk indicates the link of neuron j of the hidden layer to neuron k in the output layer. The
following illustration summarizes the architecture of the network (without biases):

5

x1Input #1

x2Input #2

...Input #. . .

xLInput #L

h1|a1

h2|a2

...

...

hM |aM

h1|ŷ1 Output #1

... Output #. . .

hN |ŷN Output #N

Hidden
layer

Input
layer

Output
layer

Given the architecture above, we can summarize the steps for the prediction for an single sample x
and its label y, i.e., following the idea of online training, as follows:

1. hhj =
∑L

i=0 xivij

2. ahj = gh(h
h
j)

3. hok =
∑M

j=0 a
h
jwjk

4. ŷk = go(h
o
k)

where the hhj indicates the affine transformation of weights (vij)i=0,...,L (bias included) and the
input x for neuron j in the hidden layer, whereas hok indicates the affine transformation for neuron
k in the output layer being calculated by the weights (wjk)j=0,...,M (bias included) and the outputs
from neurons of the hidden layer. The function gh(·) and go(·) indicates the activation functions of
the hidden layer, respectively, of the output layer.
In this example, we will use the sum-of-squares as error function calculating the difference between
yk and its prediction ŷk for each neuron k in the output layer:

E =
1

2

N∑
k=1

(ŷk − yk)2

Next, we will define learning rules for the weights v and w. These are given by:

(i) vij ← vij − η ∂E
∂vij

(ii) wjk ← wjk − η ∂E
∂wjk

BACKPROPAGATION - LEARNING RULES FOR w((II)).
We will derive the update rule with respect to weight wjk. Using the chain rule (q.v. AI Essentials:
Derivatives) we get:

∂E
∂wjk

=
∂E
∂ŷk

∂ŷk
∂hok

∂hok
∂wjk

(6)

6

We will start with the innermost term when applying the chain rule, i.e., start with the last term of
equation 6:

∂hok
∂wjk

=
∂
∑M

j=0 a
h
jwjk

∂wjk

Derivative of a sum is
the sum of its derivatives=

M∑
j=0

∂ahjwjk

∂wjk
= ahj (7)

Next, we will have a look at the second term:

∂ŷk
∂hok

=
∂

∂hok
go(h

o
k) = g′o(h

o
k) (8)

The partial derivative is dependent on the activation function we have chosen. As we can see
here, the choice of activation function is a crucial point in learning a neural network. For example,
suppose go(·) is the sigmoid function go(z) = (1 + e−z)−1, then we would get (q.v. AI Essentials:
Activation Functions):

∂

∂hok

[
1

1 + e−h
o
k

]
=

1 · −e−ho
k(−1)

(1 + e−h
o
k)2

=
1

(1 + e−h
o
k)
· 1 + e−h

o
k − 1

(1 + e−h
o
k)

= φ(hok)(1− φ(hok)) (9)

Last, the first term results in the following:

∂E
∂ŷk

=
∂

∂ŷk

[
1

2

N∑
k=1

(ŷk − yk)2)

]
= ŷk − yk (10)

We can now summarize the terms in order to get the update rule for wjk:

wjk ← wjk − η
∂E
∂wjk

= wjk − η(ŷk − yk)g′o(hok)ahj = wjk − ηδokahj (11)

where (ŷk − yk)g′o(hok) is substituted by δok.

BACKPROPAGATION - LEARNING RULES FOR v((I)).
Next, we will derive the update rule with respect to weight vij . Note that for the links v, we have to
pay attention on all the neurons in the output layer, in other words, each output neuron contributes
to the weighted product sum of the weights connecting the hidden layer with the output layer and
the error terms being calculated in the output layer. Therefore, we have to sum over all N neurons.
Using the chain rule (q.v. AI Essentials: Derivatives), we get:

∂E
∂vij

=

[
N∑
k=1

∂E
∂ŷk

∂ŷk
∂hok

∂hok
∂ahj

∂ahj

∂hhj

∂hhj
∂vij

]
(12)

We will start again with the innermost term of equation 12:

∂hhj
∂vij

=
∂

∂vij

L∑
i=0

xivij = xi (13)

The next term is again dependent on an activation function gh(·) (q.v. AI Essentials: Derivatives for
an overview of derivatives for various activation functions):

∂ahj

∂hhj
=

∂

∂hhj
gh(h

h
j) = g′h(h

h
j) (14)

7

For example, considering gh(z) = (1 + e−z)−1 (sigmoid function), we would get:

∂

∂hhj

[
1

1 + e−h
h
j

]
= σ(hhj)(1− σ(hhj)) (15)

The term in the middle evaluates to:

∂hok
∂ahj

=
∂

∂ahj

 M∑
j

ajjwjk

 = wjk (16)

Putting all together, we have:

∂E
∂vij

=
N∑
k=1

∂E
∂ŷk

∂ŷk
∂hok

wjkg
′
h(h

h
j)xi =

N∑
k=1

δokwjkg
′
h(h

h
j)xi = g′h(h

h
j)xi

N∑
k=1

δokwjk (17)

Therefore, the update rule for vij is given by:

vij ← vij − η
∂E
∂vij

= vij − ηg′h(hhj)xi
N∑
k=1

δokwjk = vij − ηδhj xi (18)

where g′h(h
h
j)
∑N

k=1 δ
o
kwjk is substituted by δhj .

BACKPROPAGATION - SUMMARY.
The steps for the backpropagation can be summarized as follows:

(i) δok = (ŷk − yk)g′o(hok)

(ii) δhj = g′h(h
h
j

∑N
k=1 δ

o
kwjk

(iii) wjk ← wjk − ηδokahj

(iv) vij ← vij − ηδhj xi

8

